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This documentation will help introduce Developers to implementing MICROSERVICES by applying the TWELVE-

FACTOR PRINCIPLES, a set of best practices and methodology for a well-formed architecture, enforcing AGILE

concepts and favoring SCALABILITY

Context
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✓ AGILITY, small independent teams take ownership of their services, work
independently and quickly (shortening cycle times).

✓ INNOVATION, small teams can act autonomously and choose the
appropriate technologies, frameworks, and tools for their domains.

✓ QUALITY, improved reusability, composability, and maintainability of code.

✓ SCALABILITY, Properly decoupled services can be scaled horizontally and 
independently from each other. The scaling process can be completely
automated.

✓ AVAILABILITY, easier to implement failure isolation, reduce the blast radius
of a failing component and improve the overall availability of a given
application.

Benefits of Microservices
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✓ DECENTRALIZED, Distributed systems with decentralized data
management, development, deployment, and operation. Each
microservice has its own view on data models.

✓ INDEPENDENT, Different components can be changed, upgraded, or
replaced independently without affecting the functioning of other
components. Teams are enabled to act independently from each other.

✓ DO ONE THING WELL, Each component is designed for a set of capabilities
and focuses on a specific domain.

✓ POLYGLOT PERSISTENCE AND PROGRAMMING, Heterogeneous approach
to operating systems, programming languages, data stores, and tools.

✓ BLACK BOX, Individual components hide the details of their complexity
from other components.

✓ YOU BUILD IT, YOU RUN IT, The team responsible for building a service is
also responsible for operating and maintaining it in production.

Principles of Microservices
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These factors serve as an excellent introduction to the discipline of

building and deploying applications in the cloud and preparing teams

for the rigor necessary to build a production pipeline around

elastically scaling applications.

This methodology helps to build software-as-a-service applications.

The Twelve Factors
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The Twelve Factors

7) Port binding1) Codebase

2) Dependencies

3) Config

4) Backing services

5) Build, release, run

6) Stateless Processes

8) Concurrency

9) Disposability

10) Dev/prod parity

11) Logs

12) Admin processes
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1) Codebase
“One codebase tracked in revision control, many deploys”

✓ One Codebase, Multiple Deploys

✓ ANTI-PATTERN, There must be a change to the
codebase to deploy to a specific environment.

✓ANTI-PATTERN, Multiple apps sharing the same
code.
SOLUTION = Factor shared code into libraries which
can be included through a Dependency Manager.

✓ Code is managed in a distributed source control 
system such as Git

✓ One Codebase = One App

✓ Codebase = repo

✓ One repo => many deploys

✓ App != Many Repos

✓Many Repos = Distributed System
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2) Dependencies
“Explicitly declare and isolate dependencies”

✓ DEPENDENCY MANAGER as Maven, we explicitly manage dependencies

in a pom.xml

✓ DEPENDENCY DECLARATION, Specify all dependencies via a Dependency

Declaration Manifest. Specific versions are important

✓ CENTRAL BUILD ARTIFACT REPOSITORY such as Jfrog Artifactory,  this

ensures that the versions are managed correctly

✓ DEPENDENCY ISOLATION, Never depend on the host to have your

dependency. Application deployments should carry all their

dependencies with them.

DEPENDENCY DECLARATION (pom.xml)
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3) Config

✓ Externalization of all configuration parameters from the code. No config
in git.

✓ An application's configuration parameters vary between environments.

✓Microservices configuration parameters should be loaded from an
external source

✓ Protect sensitive configuration information (encrypt config settings).

✓ Application configuration data is read during service bootstrapping phase.

✓ Codebase could be made open source at any moment, without
compromising any credentials.

✓ Use environment vars

“Store config in the environment”
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4) Backing Services
“Treat backing services as attached resources”

✓ All backing services should be accessible through an addressable URL, without

complex communication requirements.

✓Make no distinction between local and third party services.

✓ Keep Environment Consistence.

✓ Examples:

- Datastores

- Messaging/Queueing Systems

- SMTP services

- Caching system

- Third-Party APIs.
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5) Build, Release, Run
“Strictly separate build and run stages”

✓Strong isolation between Build, Release, and Run:
- Build Stage, compiling and producing binaries by including all the assets required.
- Release Stage, combining binaries with environment- specific configuration parameters.
- Run Stage, running application on a specific execution environment.

✓ The pipeline is unidirectional, so it is not possible to propagate changes from the run stages
back to the build stage.

✓ANTI-PATTERN, Specific builds for production.
SUGGESTION = Go through the pipeline.

✓ANTI-PATTERN, Make changes to the code at runtime.
SUGGESTION = Any change (or set of changes) must create a new release, following the

Pipeline: Build -> Release -> Run.

✓ SUGGESTION = Every release should always have a unique release ID, such as a timestamp of 
the release (such as 2011-04-06-20:32:17) or an incrementing number (such as v100).

✓ BUILD = codebase + dependencies + assets

✓ RELEASE = BUILD + config

✓ RUN = run process against RELEASE

✓ ROLLBACK = just use the last release instead.
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5) Build, Release, Run
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6) Stateless Processes
“Execute the app as one or more stateless processes”

✓ SUGGESTION, Processes are stateless and share-nothing. Any data that needs to 
persist must be stored in a stateful backing service.

✓ ANTI-PATTERN, To assume that anything cached in memory or on disk will be 
available on a future request or job.

✓ ANTI-PATTERN, “sticky sessions”.
SUGGESTION, Session state data (a datastore that offers time-expiration, such as 
Memcached or Redis).

✓ They can be killed and replaced at any time without the fear that a loss-of-a-
service instance will result in data loss.

✓Microservices should always be stateless.
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7) Port binding
“Export services via port binding”

✓ Port binding is one of the fundamental requirements for

microservices to be autonomous and self-contained.

✓Microservices embed service listeners as a part of the service

itself.

✓ You should run the service without the need for a separated web 

or application server.
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8) Concurrency
“Scale out via the process model”

✓When you need to scale, launch more microservice instances:

- Microservices should be designed to scale out by replicating.

- Microservices should be designed to scale horizontally rather

than vertically.

✓ AUTO-SCALING

The services can be elastically scaled or shrunk based on given

metric.

✓ Threading can be used within microservices, but don’t rely on

it as the sole mechanism for scaling.
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9) Disposability
“Maximize robustness with fast startup and graceful shutdown”

✓Microservices are disposable, can be started or stopped at any moment.

✓ Startup time should be minimized and microservices should shut down

gracefully when they receive a kill signal.

✓ In an automated deployment environment, we should be able bring up or bring

down microservice instances as quick as possible.

✓ It is extremely important to keep the size of the application as thin as possible, 

with minimal startup and shutdown time.

✓ Be robust against sudden death. Replace crashed processes faster.
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10) Dev/Prod Parity
“Keep development, staging, and production as similar as possible”

✓ The twelve-factor app is designed for continuous deployment by
keeping the gap between development and production small.

✓Minimize the gaps that exist between all of the environments in 
which the service runs.

✓ As soon as code is committed, it should be tested and then
promoted as quickly as possible from Dev all the way to Prod.

✓ ANTI-PATTERN, In a development environment, run all
microservices on a single machine, whereas in production
independent machines run each one. If production fails, there is no 
identical environment to reproduce and fix the issues.

Traditional app Twelve-factor app

Time between deploys Weeks Hours

Code authors vs code 

deployers

Different 

people

Same people

Dev vs production 

environments

Divergent As similar as possible
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11) Logs
“Treat logs as event streams”

✓ Logs are a stream of events.

✓ ANTI-PATTERN, Attempt to write to or manage log files.

SUGGESTION, Ship logs to a central repository by tapping the logback

appenders and  write to one of the shippers' endpoints.

✓ Log correlation: All service log entries have a correlation ID that ties

the log entry to a single transaction
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12) Admin Processes
“Run admin/management tasks as one-off processes”

✓ Use the same release bundle as well as an identical environment for both

application services and admin tasks.

✓ Admin code should be packaged along with the application code.

✓ Admin tasks should never be ad hoc and instead should be done via scripts 

that are managed and maintained through the source code repository.

✓ Admin scripts should be repeatable and non-changing across each

environment they’re run against.
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Inter-Process Communication in a 
Microservices Architecture
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One-to-One One-to-Many

Synchronous Request/response —

Asynchronous Notification Publish/subscribe

Request/async 
response

Publish/async
responses
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Asynchronous Microservices Communication through Events
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Microservices Infrastructure Automation
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