
Building Microservices
with the 12 Factor App Pattern

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

This documentation will help introduce Developers to implementing MICROSERVICES by applying the TWELVE-

FACTOR PRINCIPLES, a set of best practices and methodology for a well-formed architecture, enforcing AGILE

concepts and favoring SCALABILITY

Context

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

✓ AGILITY, small independent teams take ownership of their services, work
independently and quickly (shortening cycle times).

✓ INNOVATION, small teams can act autonomously and choose the
appropriate technologies, frameworks, and tools for their domains.

✓ QUALITY, improved reusability, composability, and maintainability of code.

✓ SCALABILITY, Properly decoupled services can be scaled horizontally and
independently from each other. The scaling process can be completely
automated.

✓ AVAILABILITY, easier to implement failure isolation, reduce the blast radius
of a failing component and improve the overall availability of a given
application.

Benefits of Microservices

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

✓ DECENTRALIZED, Distributed systems with decentralized data
management, development, deployment, and operation. Each
microservice has its own view on data models.

✓ INDEPENDENT, Different components can be changed, upgraded, or
replaced independently without affecting the functioning of other
components. Teams are enabled to act independently from each other.

✓ DO ONE THING WELL, Each component is designed for a set of capabilities
and focuses on a specific domain.

✓ POLYGLOT PERSISTENCE AND PROGRAMMING, Heterogeneous approach
to operating systems, programming languages, data stores, and tools.

✓ BLACK BOX, Individual components hide the details of their complexity
from other components.

✓ YOU BUILD IT, YOU RUN IT, The team responsible for building a service is
also responsible for operating and maintaining it in production.

Principles of Microservices

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

These factors serve as an excellent introduction to the discipline of

building and deploying applications in the cloud and preparing teams

for the rigor necessary to build a production pipeline around

elastically scaling applications.

This methodology helps to build software-as-a-service applications.

The Twelve Factors

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

The Twelve Factors

7) Port binding1) Codebase

2) Dependencies

3) Config

4) Backing services

5) Build, release, run

6) Stateless Processes

8) Concurrency

9) Disposability

10) Dev/prod parity

11) Logs

12) Admin processes

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

1) Codebase
“One codebase tracked in revision control, many deploys”

✓ One Codebase, Multiple Deploys

✓ ANTI-PATTERN, There must be a change to the
codebase to deploy to a specific environment.

✓ANTI-PATTERN, Multiple apps sharing the same
code.
SOLUTION = Factor shared code into libraries which
can be included through a Dependency Manager.

✓ Code is managed in a distributed source control
system such as Git

✓ One Codebase = One App

✓ Codebase = repo

✓ One repo => many deploys

✓ App != Many Repos

✓Many Repos = Distributed System

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

2) Dependencies
“Explicitly declare and isolate dependencies”

✓ DEPENDENCY MANAGER as Maven, we explicitly manage dependencies

in a pom.xml

✓ DEPENDENCY DECLARATION, Specify all dependencies via a Dependency

Declaration Manifest. Specific versions are important

✓ CENTRAL BUILD ARTIFACT REPOSITORY such as Jfrog Artifactory, this

ensures that the versions are managed correctly

✓ DEPENDENCY ISOLATION, Never depend on the host to have your

dependency. Application deployments should carry all their

dependencies with them.

DEPENDENCY DECLARATION (pom.xml)

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

3) Config

✓ Externalization of all configuration parameters from the code. No config
in git.

✓ An application's configuration parameters vary between environments.

✓Microservices configuration parameters should be loaded from an
external source

✓ Protect sensitive configuration information (encrypt config settings).

✓ Application configuration data is read during service bootstrapping phase.

✓ Codebase could be made open source at any moment, without
compromising any credentials.

✓ Use environment vars

“Store config in the environment”

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

4) Backing Services
“Treat backing services as attached resources”

✓ All backing services should be accessible through an addressable URL, without

complex communication requirements.

✓Make no distinction between local and third party services.

✓ Keep Environment Consistence.

✓ Examples:

- Datastores

- Messaging/Queueing Systems

- SMTP services

- Caching system

- Third-Party APIs.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

5) Build, Release, Run
“Strictly separate build and run stages”

✓Strong isolation between Build, Release, and Run:
- Build Stage, compiling and producing binaries by including all the assets required.
- Release Stage, combining binaries with environment- specific configuration parameters.
- Run Stage, running application on a specific execution environment.

✓ The pipeline is unidirectional, so it is not possible to propagate changes from the run stages
back to the build stage.

✓ANTI-PATTERN, Specific builds for production.
SUGGESTION = Go through the pipeline.

✓ANTI-PATTERN, Make changes to the code at runtime.
SUGGESTION = Any change (or set of changes) must create a new release, following the

Pipeline: Build -> Release -> Run.

✓ SUGGESTION = Every release should always have a unique release ID, such as a timestamp of
the release (such as 2011-04-06-20:32:17) or an incrementing number (such as v100).

✓ BUILD = codebase + dependencies + assets

✓ RELEASE = BUILD + config

✓ RUN = run process against RELEASE

✓ ROLLBACK = just use the last release instead.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

5) Build, Release, Run

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

6) Stateless Processes
“Execute the app as one or more stateless processes”

✓ SUGGESTION, Processes are stateless and share-nothing. Any data that needs to
persist must be stored in a stateful backing service.

✓ ANTI-PATTERN, To assume that anything cached in memory or on disk will be
available on a future request or job.

✓ ANTI-PATTERN, “sticky sessions”.
SUGGESTION, Session state data (a datastore that offers time-expiration, such as
Memcached or Redis).

✓ They can be killed and replaced at any time without the fear that a loss-of-a-
service instance will result in data loss.

✓Microservices should always be stateless.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

7) Port binding
“Export services via port binding”

✓ Port binding is one of the fundamental requirements for

microservices to be autonomous and self-contained.

✓Microservices embed service listeners as a part of the service

itself.

✓ You should run the service without the need for a separated web

or application server.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

8) Concurrency
“Scale out via the process model”

✓When you need to scale, launch more microservice instances:

- Microservices should be designed to scale out by replicating.

- Microservices should be designed to scale horizontally rather

than vertically.

✓ AUTO-SCALING

The services can be elastically scaled or shrunk based on given

metric.

✓ Threading can be used within microservices, but don’t rely on

it as the sole mechanism for scaling.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

9) Disposability
“Maximize robustness with fast startup and graceful shutdown”

✓Microservices are disposable, can be started or stopped at any moment.

✓ Startup time should be minimized and microservices should shut down

gracefully when they receive a kill signal.

✓ In an automated deployment environment, we should be able bring up or bring

down microservice instances as quick as possible.

✓ It is extremely important to keep the size of the application as thin as possible,

with minimal startup and shutdown time.

✓ Be robust against sudden death. Replace crashed processes faster.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

10) Dev/Prod Parity
“Keep development, staging, and production as similar as possible”

✓ The twelve-factor app is designed for continuous deployment by
keeping the gap between development and production small.

✓Minimize the gaps that exist between all of the environments in
which the service runs.

✓ As soon as code is committed, it should be tested and then
promoted as quickly as possible from Dev all the way to Prod.

✓ ANTI-PATTERN, In a development environment, run all
microservices on a single machine, whereas in production
independent machines run each one. If production fails, there is no
identical environment to reproduce and fix the issues.

Traditional app Twelve-factor app

Time between deploys Weeks Hours

Code authors vs code

deployers

Different

people

Same people

Dev vs production

environments

Divergent As similar as possible

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

11) Logs
“Treat logs as event streams”

✓ Logs are a stream of events.

✓ ANTI-PATTERN, Attempt to write to or manage log files.

SUGGESTION, Ship logs to a central repository by tapping the logback

appenders and write to one of the shippers' endpoints.

✓ Log correlation: All service log entries have a correlation ID that ties

the log entry to a single transaction

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

12) Admin Processes
“Run admin/management tasks as one-off processes”

✓ Use the same release bundle as well as an identical environment for both

application services and admin tasks.

✓ Admin code should be packaged along with the application code.

✓ Admin tasks should never be ad hoc and instead should be done via scripts

that are managed and maintained through the source code repository.

✓ Admin scripts should be repeatable and non-changing across each

environment they’re run against.

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

Inter-Process Communication in a
Microservices Architecture

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

One-to-One One-to-Many

Synchronous Request/response —

Asynchronous Notification Publish/subscribe

Request/async
response

Publish/async
responses

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

Asynchronous Microservices Communication through Events

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

Microservices Infrastructure Automation

We Add Value to your Business

www.morrisopazo.com / contacto@morrisopazo.com
Chicago - Antofagasta - Temuco - Santiago

References

✓ The Twelve-Factor App: https://12factor.net/

✓ Microservices on AWS:

https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf

✓ Beyond the Twelve-Factor App (Kevin Hoffman)

✓ Spring Microservices (Rajesh RV)

✓ Microservice Architecture (Irakli Nadareishvili, Ronnie Mitra, Matt McLarty & Mike Amundsen)

✓ Kubernetes Microservices with Docker (Deepak Vohra)

✓ Spring Microservices in Action (John Carnell)

✓ Spring Boot Messaging (Felipe Gutierrez)

https://12factor.net/
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf

contacto@morrisopazo.com

USA - CHILE

Find out more at

¡Visit our Web Site!

